諸羅樹蛙（台灣特有種）的鳴叫類型

林文璨¹
私立靜宜大學 生態學研究所

鄭先祐²
國立臺南大學 環境生態研究所

摘要

從2007年5月到9月，於雲林地區4個樣區，總共有23次錄音。諸羅樹蛙（Rhacophorus arvalis）共有3種音節（A、B、C），4種鳴叫類型（I、II、III、IV）：最常出現I類型，由A音節組成，音節有1個到5個，以3個為最多。I類型會連續出現3次到7次為主（61.4%），4次最多。II類型由B音節組成，音節有1個到5個，以2個和3個為主，相同鳴叫會出現1次到19次，17次及18次不出現，集中在3次到10次（67.4%），以1次最多；III類型與IV類型皆由C音節組成，III類型音節數從1次到27次，25次及26次不出現，主要是7次到13次（81%），最多的是11次，IV類型音節數從3個到12個，集中在5個到8個（80%），但若以音節音節來看，則以7個最多。音節間隔時間，III類型為43ms到107ms，IV類型為11ms到29ms。IV類型音訊波長1次到11次，8次到10次不出現，以1次為主，III類型則不會連續出現。鳴叫類型組合成鳴叫陣，有4種主要鳴叫陣[a]、[a][γ]、[a][β]和[a][β][γ]。其中a是III類型，β是II類型，γ是III IV類型。非竹林區域的諸羅樹蛙鳴叫陣的多樣性（Shannon-Weiner index, 1.147），比竹林區域（0.957）高。

關鍵詞：諸羅樹蛙（Rhacophorus arvalis）、鳴叫類型（call type）、鳴叫陣（Call bout）、特有種（endemice species）

¹靜宜大學生態學系 研究所碩士班，E-mail: bulbul.lin@msa.hinet.net
²國立臺南大學 環境與生態學院 院長，E-mail: Japalura@hotmail.com（通訊作者）
環境與生態學報

前言

鳴叫(Call)是蛙類(frogs and toads)主要溝通機制(Gerhardt and Huber, 2002; Pargana et al., 2003; Toledo and Haddad, 2005)，不論是雄蛙之間或雌蛙與雄蛙之間(Friedl and Klump, 2002)。雄蛙鳴叫吸引雌蛙或跟雄蛙競爭，會增加接近雌蛙的機會(Tobias et al., 2004)。因此面對不同的情況，蛙類會發出不同的嘔叫(Gerhardt and Huber, 2002)。而不同的地理環境，也會顯現出不同的鳴叫(Pröhl et al., 2007)。利用鳴叫的波譜特性(spectral characteristics)和時間特性(temporal characteristics)可以分辨不同的鳴叫(Tobias et al., 2004; Martins and Jim, 2004)。

多數蛙類鳴叫是簡單而固定的(Suthers et al., 2006)，呈現一連串鳴叫重複的現象，有些蛙類則擁有多種鳴叫類型(Martins and Jim, 2004; Larson, 2004)。這種現象普遍分布在世界上，如亞洲(Sánchez-Herraiz et al., 1995; Kanamadi, Hiremath and Schneider, 1994)，歐洲(Márquez and Bosch, 1995)，非洲(Bosch, De la Riva and Márquez, 2000; De la Riva, Bosch and Márquez, 2001; Vences and Glaw, 2004)，美洲(De la Riva, Márquez and Bosch, 1995; Toledo and Haddad, 2005; Owen and Tucker, 2006; Márquez, De la Riva and Bosch, 1996; Padial and De la Riva, 2005; Heyer and Scott, 2006; De la Riva, Márquez and Bosch, 1996; Caldwell and Shepard, 2007)，澳洲及太平洋島嶼(De la Riva, Bosch and Márquez, 2004; Richards, 2007)。不同於一般蛙類擁有單一鳴叫類型的情況，有些蛙類則擁有許多鳴叫類型(Martins and Jim, 2004; Larson, 2004)。最常見的是2到3種類型，如Pelodytes ibericus (Iberian Parsley Frog) (Márquez, Pargana and Crespo, 2001)，Hyperolius nasutus (Longnose Reed Frog) (Channing, Moyer and Burger, 2002)，Hyla nana (Dwarf Treefrog)及H. sanborni (Sanborn's Treefrog) (Martins and Jim, 2003)，Leptodactylus punctulatus (Ceara White-lipped Frog) (Brandão and Heyer, 2005)，Physalaemus punctosus (Túngara Frog) (Bernal, Rand and Ryan, 2006)及Rana pipiens (Northern Leopard Frog) (Larson, 2004)等等。Boophis madagascariensis (Madagascar Bright-eyed Frog)有28種鳴叫類型，是目前已知擁有最多類型的蛙類，分成toc-like(1)、click-like(2)、tonal(1)、creaky(3)、pulsatile(ambic)5種類型，其中pulsatile類型依據其脈衝數(pulse)的不同，除了21個之外，從2個到23個，分為21種。不過同一隻雄蛙最多出現14種類型(Narins, Lewis and McClelland, 2000)：Leptodactylus natalensis(Rio Bahu White-lipped Frog)有10種鳴叫類型，分為3個群組(group)，A群組有A1和A2等2種類型，B群組有B1、B2、B3、B4和B5等5種類型，C群組有C1、C2和C3等3種類型(Prado, Bilate and WoGel, 2007)。Litoria adelaidensis(Slender Treefrog)有4種鳴叫類型，1、2、3類型有明顯音節，4類型沒有明顯音節(Smith and Roberts, 2003)。

另外，波譜特性的差異，也讓蛙類顯現不同的鳴叫類型。Euposphus calcaratus (Chilo Island Ground Frog)和Euposphus roseus (Rosy Ground Frog)的鳴叫在調頻模式(FM pattern)的不同，就分為調頻(almost flat FM)(typeA)、上升調頻(upward FM)(typeB)、下降調頻(downward FM)(typeC)，
和升降調頻(up-down (inverted U) FM)型類型(Márquez et al., 2005)。Xenopus laevis (African Clawed Frog)的鳴叫都是由一連串的快慢顫音(trill)來組成，但波譜及時間特性的差異，分辨出8種鳴叫類型，由雄蛙發出有6種，雌蛙發出2種(Tobias et al., 2004)。

蛙類的各鳴叫類型會有固定出現的位置。R. pipiens擁有3種音節：S(snore)類型、G(grunt)類型和C(chuckle)類型，有4種主要鳴叫形式，第1種是S，第2種是SG[G]，第3種是SG[G][C]，第4種是C[C] (Larson, 2004)。Hypsiboas albopunctatus (Spotted Treefrog)有A、B、T等3種音節，主要有AB·TB·TBB·ABT等4種形式(Toledo et al., 2007)。雄蛙發出的鳴叫包含首階(introductory)音節及二階(secondary)音節，P. ibericus的A音節就屬於首階音節，後面會接著1到9個B音節，B音節就是二階音節(Márquez, Pargana and Crespo, 2001)：H. nano和H. sanborn兩種音節出現的時機類似P. ibericus(Martins and Jim, 2003)。Eleutherodactylus coqui(Puerto Rican coqui)的「co」音節會單獨出現或後面接著「qui」音節，但「qui」音節不會單獨出現或在「co」音節的前面(Narins and Capranica, 1978)。

蛙類鳴叫具有許多的功能，不過要探討其功能必須先了解其鳴叫類型。本研究目的在對諸羅樹蛙的鳴叫類型作了解，並且比較不同棲地鳴叫的差異。

材料與方法

諸羅樹蛙(Rhacophorus arvalis)主要分布在雲林、嘉義及臺南，棲息在竹林、果園及次生林3種棲地類型(林, 1995；莊, 2000)。本研究於雲林地區選取這3種棲地，在4個樣區進行錄音，林内九芎(N23° 44’ 32.4",E120° 36’ 38.8’;132m)為果園，斗六石榴(N23° 43’ 25.0",E120° 34’ 33.4’;56m)為次生林，歸類為非竹林棲地；斗南將軍(N23° 38’ 44.2",E120° 31’ 35.9’;57m)及古坑水庫(N23° 40’ 06.8",E120° 33’ 30.1’;75m)為竹林(圖1)。錄音期間為諸羅樹蛙生殖季節，從2007年5月到9月。
圖 1、諸羅樹蛙樣區位置圖。空心圈是林內九芎(N23°44'32.4"E120°36'38.8";132m)。實心圈是斗六石榴(N23°43'25.0"E120°34'33.4";56m)。空心方塊是古坑水碓(N23°40'06.8"E120°33'30.1";75m)。實心方塊是斗南將軍(N23°38'44.2"E120°31'35.9";57m)。

利用 Sony Hi-MD MZ-RH10 數位錄音機及 AT897 指向性麥克風進行錄音，錄音距離在 1 公尺以內，錄音時間介於 18：00 到 22：00，每次錄音時間以 1 個小時為原則，但會視當時狀況而縮減或延長。每次只錄一隻諸羅樹蛙雄蛙的鳴叫，因此 1 次錄音代表 1 隻雄蛙。以 Avisoft-SASLab Pro 4.39 版分析聲音，內容包含音節時間(note duration)、音節間隔(note interval)、每次鳴叫音節數(note number per call)及頻率(frequency)，各項鳴叫特性依照 Cocroft and Ryan(1995)及 Tárano(2001)所定義而訂。鳴叫類型的多樣性是以 Shannon-Wiener index 表示。

結果

5 個月期間，在 4 個樣區總共有 23 次錄音，竹林樣區有 18 次，古坑水碓有 10 次，斗南將軍有 8 次；非竹林樣區有 5 次，林內九芎(果園)有 4 次，斗六石榴(次生林)有 1 次。竹林樣區內共棲蛙種有面天樹蛙(Chirixalus idiootocus)、黑眶蟾蜍(Bufo melanostictus)、小雨蛙(Microhyla ornata)和澤蛙(Rana limnocharis)，非竹林樣區(果園及次生林)並無發現共棲蛙種。

音節與類型(Note and Type)

按頻率，諸羅樹蛙的鳴叫有 3 種音節(A、B 和 C)。最高頻率為 13.6kHz 到 21.8kHz (A 音節)，B 音節頻率為 4.6kHz 到 16.8kHz，C 音節頻率最低 (3.2 kHz 到 8.7kHz)(圖 2、3)。
(c) C 樣式

圖 2、諸羅樹蛙的音節。各圖橫軸代表時間(秒)；縱軸在波形圖(wave form) (上)，代表相對音量；頻譜圖(audio spectrogram) (下)，代表頻率(kHz)。

圖 3，諸羅樹蛙各音節的頻率。A 音節頻率最高(13.6kHz 到 21.8kHz)。其次是 B 音節 (4.6kHz 到 16.8kHz)，C 音節頻率最低(3.2kHz 到 8.7kHz)。

按 3 種音節組成和音節間隔時間，諸羅樹蛙的鳴叫可分成 4 種類型(I、II、III、IV)(圖 4)。I 類型和 II 類型分別由 A 音節與 B 音節組成，音節數有 1 個到 5 個，但 I 類型以 3 個為最多(91.2%)(圖 5a)，II 類型以 2 個(51.8%)和 3 個(41.2%)為主(圖 5b)。2 個類型的音節間隔時間差不多，I 類型為 34ms 到 43ms，II 類型音節間隔時間為 29ms 到 43ms(表 1)。類型之間以 2 秒為界，2 秒以上稱為連續鳴叫，I 類型會連續出現 3 次到 7 次為主(61.4%)，4 次最多(15.0%)(圖 6a)。II 類型會連續出現 1 次到 19 次，17 次及 18 次未出現，集中在 3 次到 10 次(67.4%)，以 1 次最多(20.5%)(圖 6b)。
圖 4 諸羅樹蛙的鳴叫類型(音節的組合)。各圖横軸代表時間(秒)；縱軸在波形圖(wave form) (上)，代表相對音量；頻譜圖(audio spectrogram) (下)，代表頻率(kHz)。

(a) I類型

(b) II類型

(c) III類型

(d) IV類型
圖 5，諸羅樹蛙鳴叫類型的音節組合（音節數）。
(a) I 類型音節數，1 到 5 個，3 個音節數最多。
(b) II 類型音節數，1 個到 5 個，2 個和 3 個音節數最多。
(c) III 類型音節數，1 個到 27 個，
但 25 個及 26 個沒有出現，主要是 7 個到 14 個（81%），最多的是 11 個。
(d) IV 類型音節數有 3 個到 12 個，集中在 5 個到 8 個（80%），但若以單一音節數來看，則以 7 個最多。

III 類型和 IV 類型都由 C 音節組成，但音節間隔時間差異大，III 類型是 43ms到 107ms，IV 類型是 11ms到 29ms（表 1）。III 類型音節數有 1 次到 27 次，25 次和 26 次未出現，27 次只在古坑水壩出現 1 次，主要是 7 次到 14 次（80.9%），最多的是 11 次（11.3%）（圖 6c）：IV 類型音節數從 3 個到 12 個，集中在 5 個到 8 個（79.7%），但若以單一音節數來看，則以 7 個最多（25.7%）（圖 5c）。III 類型不會連續出現，IV 類型會連續出現 1 次到 11 次，但 8 次到 10 次沒有出現，以 1 次為主（71.1%）（圖 6d）。

表 1，諸羅樹蛙鳴叫類型（音節特質與連續次數）的比較。

<table>
<thead>
<tr>
<th>類型</th>
<th>音節樣式</th>
<th>音節間隔(ms)</th>
<th>音節數(個)</th>
<th>連續鳴叫數(次)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A</td>
<td>34-43</td>
<td>1-5</td>
<td>3-7</td>
</tr>
<tr>
<td>II</td>
<td>B</td>
<td>29-43</td>
<td>1-5</td>
<td>1-16,19</td>
</tr>
<tr>
<td>III</td>
<td>C</td>
<td>43-107</td>
<td>1-24,27</td>
<td>1</td>
</tr>
<tr>
<td>IV</td>
<td>C</td>
<td>11-29</td>
<td>3-12</td>
<td>1,7,11</td>
</tr>
</tbody>
</table>
環境與生態學報

諸羅樹蛙鳴叫以 I 類型為主，佔總鳴叫類型的 83.9%，II 類型有 3.2%，III 類型有 10.3%，而 IV 類型只有 2.5%(圖 7)。各鳴叫類型間隔時間方面，連續 I 類型間隔時間為 1000ms 到 2000ms，連續 II 類型間隔時間為 69ms 到 127ms，連續 IV 類型間隔時間為 104ms 到 240ms，III 類型並未出現連續情況：不同類型的間隔時間，I 類型和 III 類型間隔時間在 104ms 到 179ms：III 類型和 II 類型間隔時間在 95ms 到 104ms：II 類型和 IV 類型間隔時間在 104ms 到 223ms，其他情況則未出現或出現次數少(表 2)。

![圖 7] 諸羅樹蛙 4 種鳴叫類型出現百分率。以 I 類型為主，佔總鳴叫類型的 83.9%，II 類型有 3.2%，III 類型有 10.3%，而 IV 類型只有 2.5%。

表 2 諸羅樹蛙各鳴叫類型，同類型或不同類型間，連續鳴叫(2 秒內)的間隔時間 (ms)。直排的類型在前，橫排的類型在後。(1,000ms=1s)

<table>
<thead>
<tr>
<th>類型</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1,000-2,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>69-127</td>
<td>104-179</td>
<td>104-223</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td>95-104</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td>104-240</td>
</tr>
</tbody>
</table>

諸羅樹蛙鳴叫陣(call bout)，主要出現 3 種形式是 α(III)，β(II)，γ (III IV)，可分為 [α][β][γ]，α 喚叫。只包含 α 形式，沒有其他形式：[α][β] 喚叫陣，包含 α 形式及 β 形式或只包含 β 形式：[α][β][γ] 喚叫陣，包含 α 形式及 γ 形式或只包含 γ 形式：[α][β][γ][δ] 喚叫陣，包含 α 形式、β 形式及 γ 形式或只包含 β 形式和 γ 形式。[α] 喚叫陣佔 61.7%，[α][β] 喚叫陣佔 22.0%，[α][β][γ] 喚叫陣佔 9.1%，[α][β][γ][δ] 喚叫陣佔 6.7%，其他只佔 0.5%(表 3)。另外，IV、III IV 也出現過，但只有 1 次或 2 次；而未包含此 5 種形式的鳴叫陣有 2 種，分別是 S-I - I-X 和 S-I - X，共有 185 個。
表 3、諸羅樹蛙的鳴叫陣。[α]鳴叫陣，只包含 α 形式，沒有其他形式；[α][β]鳴叫陣，包含 α 形式及 β 形式，或只包含 β 形式；[α][γ]鳴叫陣，包含 α 形式及 γ 形式，或只包含 γ 形式；[α][β][γ]鳴叫陣，包含 α 形式、β 形式及 γ 形式，或只包含 β 形式和 γ 形式。

<table>
<thead>
<tr>
<th>鳴叫陣組合</th>
<th>竹林</th>
<th>非竹林</th>
<th>總計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>次數</td>
<td>百分率</td>
<td>次數</td>
</tr>
<tr>
<td>[α]</td>
<td>53</td>
<td>10.0%</td>
<td>6</td>
</tr>
<tr>
<td>[α][β]</td>
<td>95</td>
<td>17.9%</td>
<td>47</td>
</tr>
<tr>
<td>[α][γ]</td>
<td>28</td>
<td>5.3%</td>
<td>15</td>
</tr>
<tr>
<td>[α][β][γ]</td>
<td>3</td>
<td>0.6%</td>
<td>0</td>
</tr>
<tr>
<td>總計</td>
<td>531</td>
<td>100%</td>
<td>114</td>
</tr>
</tbody>
</table>

棲地差異(Habitat variation)

諸羅樹蛙的棲地分成竹林與非竹林(果園與次生林)兩區域，兩區域都是以 I 類型出現最多，非竹林區域 II 類型、III 類型和 IV 類型的比率上升(圖 8)。若以 Shannon-Wiener index 來看鳴叫類型多樣性，非竹林區域(0.781)大於竹林區域(0.516)(表 4)。

![圖 8、諸羅樹蛙於竹林與非竹林不同棲地鳴叫類型出現的百分率。](image-url)
表4 諸羅樹蛙於不同棲地(竹林和非竹林)鳴叫類型的多樣性(diversity)，以Shannon-Wiener index計算。

<table>
<thead>
<tr>
<th></th>
<th>竹林</th>
<th></th>
<th>lnP</th>
<th>p.lnP</th>
</tr>
</thead>
<tbody>
<tr>
<td>類型</td>
<td>數量</td>
<td>比例(p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>13,121</td>
<td>0.86</td>
<td>-0.151</td>
<td>-0.130</td>
</tr>
<tr>
<td>II</td>
<td>363</td>
<td>0.02</td>
<td>-3.912</td>
<td>-0.078</td>
</tr>
<tr>
<td>III</td>
<td>1,491</td>
<td>0.10</td>
<td>-2.303</td>
<td>-0.230</td>
</tr>
<tr>
<td>IV</td>
<td>267</td>
<td>0.02</td>
<td>-3.912</td>
<td>-0.078</td>
</tr>
<tr>
<td>總計</td>
<td>15,242</td>
<td>1.00</td>
<td>-0.516</td>
<td></td>
</tr>
</tbody>
</table>

\[H' = \Sigma p.lnP = 0.516 \]

<table>
<thead>
<tr>
<th></th>
<th>非竹林</th>
<th></th>
<th>lnP</th>
<th>p.lnP</th>
</tr>
</thead>
<tbody>
<tr>
<td>類型</td>
<td>數量</td>
<td>比例(p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>3,096</td>
<td>0.76</td>
<td>-0.274</td>
<td>-0.208</td>
</tr>
<tr>
<td>II</td>
<td>261</td>
<td>0.06</td>
<td>-2.813</td>
<td>-0.169</td>
</tr>
<tr>
<td>III</td>
<td>507</td>
<td>0.12</td>
<td>-2.120</td>
<td>-0.254</td>
</tr>
<tr>
<td>IV</td>
<td>218</td>
<td>0.05</td>
<td>-2.996</td>
<td>-0.150</td>
</tr>
<tr>
<td>總計</td>
<td>4,082</td>
<td>1.00</td>
<td>-0.781</td>
<td></td>
</tr>
</tbody>
</table>

竹林地區的鳴叫組成以[a]為主(66.3%)，其次為[a][γ](17.9%)，而非竹林地區這2類鳴叫組的比例相當，分別是40.4%和41.2%。不同的是，[a][β]在竹林的比例較高(10.0% > 5.3%)，[a][β][γ]在非竹林的比例較高(13.2% > 5.3%)。若以Shannon-Wiener index來看鳴叫組多樣性，非竹林區域(1.147)大於竹林區域(0.957) (表5)。

表5 諸羅樹蛙於不同棲地(竹林和非竹林)鳴叫組的多樣性(diversity)，以Shannon-Wiener index計算。

<table>
<thead>
<tr>
<th></th>
<th>竹林</th>
<th></th>
<th>lnP</th>
<th>p.lnP</th>
</tr>
</thead>
<tbody>
<tr>
<td>鳴叫組合</td>
<td>數量</td>
<td>比例(p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[a]</td>
<td>352</td>
<td>0.67</td>
<td>-0.400</td>
<td>-0.268</td>
</tr>
<tr>
<td>[a][β]</td>
<td>53</td>
<td>0.10</td>
<td>-2.303</td>
<td>-0.230</td>
</tr>
<tr>
<td>[a][γ]</td>
<td>95</td>
<td>0.18</td>
<td>-1.715</td>
<td>-0.309</td>
</tr>
<tr>
<td>[a][β][γ]</td>
<td>28</td>
<td>0.05</td>
<td>-2.996</td>
<td>-0.150</td>
</tr>
<tr>
<td>總計</td>
<td>528</td>
<td>1.00</td>
<td>-0.957</td>
<td></td>
</tr>
</tbody>
</table>

\[H' = \Sigma p.lnP = 0.957 \]

<table>
<thead>
<tr>
<th></th>
<th>非竹林</th>
<th></th>
<th>lnP</th>
<th>p.lnP</th>
</tr>
</thead>
<tbody>
<tr>
<td>鳴叫組合</td>
<td>數量</td>
<td>比例(p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[a]</td>
<td>46</td>
<td>0.40</td>
<td>-0.916</td>
<td>-0.366</td>
</tr>
<tr>
<td>[a][β]</td>
<td>6</td>
<td>0.05</td>
<td>-2.996</td>
<td>-0.150</td>
</tr>
<tr>
<td>[a][γ]</td>
<td>47</td>
<td>0.41</td>
<td>-0.892</td>
<td>-0.366</td>
</tr>
<tr>
<td>[a][β][γ]</td>
<td>15</td>
<td>0.13</td>
<td>-2.040</td>
<td>-0.265</td>
</tr>
<tr>
<td>總計</td>
<td>114</td>
<td>1.00</td>
<td>-1.147</td>
<td></td>
</tr>
</tbody>
</table>

\[H' = \Sigma p.lnP = 1.147 \]
諸羅樹蛙的鳴叫模式

討 論

諸羅樹蛙是臺灣特有種(Lue, Lai and Chen, 1995)。有3種音節模式(A, B和C)，組成4種類型(I, II, III和IV)，主要以I類型出現最多，其他3種類型組成3種形式(α, β和γ)，α形式是主要成分，鳴叫陣則由3種形式組成，主要分成4類([α],[α][β],[α][γ]和[α][β][γ])。在不同棲地的比較下，非竹林區域的I類型比例會減少，鳴叫多樣性增加；鳴叫陣的組成在竹林地區是較為單純，非竹林地區的鳴叫陣則較為複雜，鳴叫陣的多樣性以非竹林地區較高。

在許(2006)的研究中，將諸羅樹蛙的鳴叫分成5類，其中宣告鳴叫有3類，本研究中的4類鳴叫都被歸類為宣告鳴叫，而II, IV類型更被歸為同一類，但因其頻率及音節間隔時間皆不相同，故將其分成2種不同類型。

nataleinsis（Rio Bahu White-lipped Frog）有10種類型（Prado, Bilate and WoGel, 2007）。

諸羅樹蛙的鳴叫模式

Pipistrellus nathusi(Nathusius’ pipistrelle bat)有5種鳴叫類型，最主要的鳴叫陣是ABCED，意思是「注意，這裡有一隻Pipistrellus nathusi(A)，我是公的(BC)，停在這裡(E)，我們分享一個共同的社會身分(common social identity)和共同的通信水池(common communication pool) (D)」(Jahelková, Horáček and Bartoníčka, 2008)。

諸羅樹蛙在非竹林地區的鳴叫多樣性相對較高，卻也顯示出非竹林地區比起竹林地區相對較複雜，而單調的環境如竹林，鳴叫也相對單純。在鳴叫陣的表現上也是如此，竹林地區的鳴叫陣多數是a元素組成，或未包含三元素，組成較為單純；非竹林地區則大多為a、β、γ 元素或a元素組成，組成較為複雜。

環境的特性會影響鳴叫傳遞的效率，蛙類面對不同的植被及環境噪音，會有不一樣的鳴叫模式(Castellano, Gicoma and Ryan, 2003)。在Adenomera hylaedactyla(Napo Tropical Bullfrog)的棲地中，顯示4種不同的鳴叫類型，而且出現在不同的環境中(Angulo, Cocroft and Reichle, 2003)。根據「environmental selection」假說，環境的物理因子會影響鳴叫，使鳴叫不會因距離而消耗或扭曲，Bufo viridis(European Green Toad)就符合這樣的現象(Castellano, Gicoma and Ryan, 2003)。通常在吵雜或複雜的棲地，蛙類會有較高的頻率，Acris crepitans(Northern Cricket Frog)的鳴叫，在森林棲地比開放的草地，有更高的頻率(Witte et al., 2005)。另外，在時間特性方面，A. crepitans在森林棲地也顯示更短的鳴叫時間及更快的音節率(Witte et al., 2005)。

發出大曲目(large repertoires)可能代表的意義，各個研究有不同的推測。Narins, Lewis and McClelland(2000)認爲，從鳥類的文獻中，提供了3種可能性：(一)大曲目是性擇(sexual selection)的結果，可以有較佳的領域及更早的交配權，擁有大曲目的Melospiza melodia(Song Sparrow)雄鳥就顯示一生有較高的遺傳機會(lifetime fitness)(Pfaff et al., 2007)。而Parus caeruleus(Blue Tit)的曲目也反應出雄鳥的品質(Doutrelant et al., 2000)。(二)The Beau Geste hypothesis，這個假設認為鳴叫是有領域性的，外來者透過傾聽鳴叫可以評斷一個棲地的現存鳥類密度，因此如果雄鳥可以發出不同的鳴叫，製造棲地擁擠的假象，可以使外來者轉而尋找其他棲地。(三)曲目會達到穩定狀態，某些鳥類的雄鳥會在此應和中，達到一種穩定狀態。如果這樣的穩定狀態有助於領域的維持，鳴叫曲目就會顯得重要。以諸羅樹蛙而言，雄蛙對於棲地具有忠誠度，轉換棲地的可能性不高(謝, 2004)，而且群集展示(Lek)的物種，其領域大小與領域內雄蛙鳴叫率似乎無太大關連(Almeida and Macedo, 2001)，以此推論，較不符合第二種說法，第一及第三種說法可能性較高。
參考文獻

林麗紅 (1995) 綠色小精靈-諸羅樹蛙簡介及其分布地點之新發現。自然保育季刊，12, 49-51。
張耀文 (1989) 面天樹蛙生殖行爲之研究。國立台灣大學動物學研究所碩士論文。
陳賜隆 (1991) 翡翠樹蛙(Rhacophorus maragedinus)生殖行爲及生態學之研究。國立臺灣師範大學生物學研究所碩士論文。
莊鎮碩 (2000) 諸羅樹蛙(Rhacophorus arvalis)生殖行爲之研究。國立臺灣師範大學生物學系碩士論文。
李文傑 (2001) 橙腹樹蛙生殖行爲及生態學之研究。國立臺灣師範大學/生物研究所。
陳惇聿 (2002) 莫氏樹蛙雄蛙宣告叫聲及雌蛙選擇。國立成功大學生物學系碩士論文。
謝煒智 (2004) 諸羅樹蛙群集展示行爲之研究。國立臺灣師範大學生物研究所碩士論文。
許浩瑩 (2006) 從鳴聲探討諸羅樹蛙(Rhacophorus arvalis)的雌性選擇。國立臺灣師範大學生命科學研究所碩士論文。
Christensen-Dalsgaard J., T. Ludwig and P. M. Narins (2002) Call diversity in an Old World treefrog:
Associations of context and signaler behavior to call structure. The Auk 125(4): 896-907.

Call types of *Rhacophorus arvalis* (Anuran: Rhacophoridae), Taiwan endemic species

Wen-Tsann Lin¹

¹Graduate Institute, Department of Ecology, Providence University

Hsien-Yu Cheng²

²College of Environmental Sciences and Ecology, National University of Tainan

Abstract

A total of 23 individuals have been recorded in four sites of *Rhacophorus arvalis* at Yunlin county during May to September of 2007. There are 3 notes (A · B · C) and 4 call types (I · II · III · IV). The call type of I, composed by A note, is common. The number of A note in the I call type is 1 to 5, and the mode is 3. The I call type appears repeatedly by 3 to 7 times (61.4%), and the mode is 4. The II call type is composed by B note. The number of B note in the II call type is 1 to 5, and the mode is 2 and 3. The repeated number in the II call type is 1 to 19, mostly (67.4%) 3 to 10, and the mode is 1, but missing 17 and 18. The III and IV call types are all composed by C note. The number of C note in III type has 1 to 27, but missing 25 and 26. Mostly (81%) is in 7 to 13, and the mode is 11. The number of C note in the IV call type has 3 to 12, mostly (80%) in 5 to 8, and the mode is 11. The note interval in the III call type is 43ms to 107ms, but in the IV call type is 11ms to 29ms. The repeated number in the IV call type is 1 to 11, but missing 8 to 10, and the mode is 1. The III call type appears no repeatedly. Call bout is composed by call types. There are 4 major call bout [α] · [α][γ] · [α][β] and [α][β] [γ]. [α] represent III type, [β] represent III II type, and [γ] represent III II IV type. The diversity of call bouts in non-bamboo woods is higher than the one in bamboo woods (Shannon-Weiner index, 1.147 vs. 0.957).

Key words: *Rhacophorus arvalis*, call type, call bout, endemic species